2017 ENVIRONMENTAL REPORT

Updated environmental report for the Linz and Steyrling locations

DATA, FACTS AND IMPORTANT INFORMATION ON ENVIRONMENTAL TOPICS

The content of the updated 2017 Environmental Report comply with requirements of the EMAS III Directive and refer to the validated locations in Linz and Steyrling and the respective companies voestalpine Stahl GmbH, voestalpine Grobblech GmbH, voestalpine Giesserei Linz GmbH, voestalpine Camtec GmbH (former non-ferrous metal foundry of voestalpine Giesserei became a new company on 1 July 2017 and has since been called voestalpine Camtec GmbH), voestalpine Steel & Service Center GmbH, voestalpine Standortservice GmbH, Logistik Service GmbH, Cargo Service GmbH and voestalpine Automotive Components Linz GmbH.

CONTENT

Implemented environmental measures04	4
2017/18 environmental program0!	5
Production and energy figures00	6
Core indicators - Linz location00	8
Core indicators - Steyrling location10	О
Environmental highlights12	2
Clean air	
Energy1	6
Water management1	
Waste management20	О
Transport2	
Safety takes highest priority - Seveso production systems22	2
Radiation, noise and odor20	8
Glossar	9
Information, contact and about us	0

IMPLEMENTED ENVIRONMENTAL MEASURES

Excerpt of environmental measures implemented in the 2016/17 fiscal year

Essential environmental measures that have made a significant contribution to environmental performance are integral constituents of the environmental programs of companies included in the scope. The following tables indicate measures already implemented in previous programs and document the objectives newly defined in the current 2017/18 environmental program. Further individual measures have been developed and implemented in the respective companies.

Company	Target	Measure	Figure	Deadlines
voestalpine Stahl GmbH	Reduced sodium hydroxide consumption while main- taining the same level of coking plant emissions	Optimization of parameters, e.g. ammonia, in stripping-column dosing	Sodium hydroxide consumption reduced by roughly 144 tons/year	31 May 2016
voestalpine Stahl GmbH	Dust reduction in burdening system of Blast Furnace 6	Installation of a new conveying system (drainage runs, weighing hoppers, conveyor belts) as well as structural measures in the area of the hoppers	Reduction of roughly 498 kg/year of diffuse dust emissions	30 Sep. 2016
voestalpine Stahl GmbH	R&D project for increased recycling of slags from the steelmaking plant	Testing and creation of a strategy to identify further steps	Strategy for reclamation of metal fraction and Cr-reduced mineral fraction in metallurgical slag	31 Mar. 2017
Steyrling location	Reduction of burned lime fines in lump lime	Installation of sifters for loading lump lime on railcars for the steelmaking plant in Linz	Reduction of roughly 4000 tons/year of burned lime fines (< 2 mm)	31 Mar. 2017
voestalpine Grobblech GmbH	Simplification and optimiza- tion of packaging for clad plates	Replacement of packaging paper with polyethylene-coated paper, reduction of packing wood and films, supply of large orders with kraft paper covers	Packaging materials reduced by approximately 64%	30 Sep. 2016
Logistik Service GmbH	Reduced consumption of diesel fuel on the works railway	Purchase of two new diesel locomotives with start/stop technology (903.07, 903.08)	Diesel consumption savings of roughly 15% amounts to a reduction of approximately 2 liters/hour, or 16,000 liters of diesel savings per locomotive and year	31 Mar. 2017
voestalpine Standortservice GmbH	Works fire departmed: Reduced consumption of diesel fuel on the works railway	Procurement of spares: three chain saws	Pollutant emissions reduced by 25-30%	31 Mar. 2017
voestalpine Automotive Components Linz GmbH	LED lighting in production facility 1	Conversion of lighting system in the buildings from mercury vapor to LED lighting	Electricity consumption reduced by 798 MWh/year	31 Dec. 2016

2017/18 ENVIRONMENTAL PROGRAM – MEASURES BEING IMPLEMENTED

Company	Target	Measure	Figure	Deadlines	Status
voestalpine Stahl GmbH	Coking plant: Soil extraction: Reduction of BTEX content in future excavated material	Remediation of Linz coking plant 076 in Linz, stage 1: Extraction of BTEX from the contaminated underground air phase in the unsaturated zone (soil extraction)	Reduction of BTEX in contaminated soil to below 50 mg/m ³	31 Dec. 2022	
voestalpine Stahl GmbH	Minimization of (environmental) effects in the event of flooding	Optimization of flood protection	Flood protection increased to roughly HW 1000	31 Dec. 2020	
voestalpine Stahl GmbH	Reduction of carbon organic emissions in the coal pulveriza- tion and drying system	Installation of a post-combustion system in the coal pulverization and drying system	Carbon organic emis- sions reduced to below roughly 50 mg/Nm ³	31 Dec. 2017	
voestalpine Giesserei Linz GmbH	Plant optimization and increased resource efficiency	Sand treatment facility optimized by replacing magnetic cutters with magnetic drums	Further increase of cutting performance by roughly 100 kg/h (savings through purchase of chromite sand)	Verification management prolonged until 31 Dec. 2017	Being im- plemented
Logistik Service GmbH	Reduced electricity consumption	Convert lighting system to LED technology Operations-based switching and dimming of lighting (new railway system installations in the area of the blast furnaces and steelmaking plant)	Savings of roughly 2,000 MWh/year	31 Dec. 2017	pientented
Cargo Service GmbH	Reduced energy consumption	New strategy for more ecologi- cal operation of engines during railway transport The scheduled speed of trains in which change was possible was reduced from 100 to 90 km/h.	Reduced power consumption by 35 MWh/year	Current im- plementation continued until 31 Mar. 2018	
voestalpine Steel & Service Center GmbH	Number of unscheduled truck transports reduced in pre- material supply to SSC subsidiary in Romania	Avoidance of truck transports through improvements in production logistics	Unscheduled truck transports reduced by roughly 50 %	31 Mar. 2018	

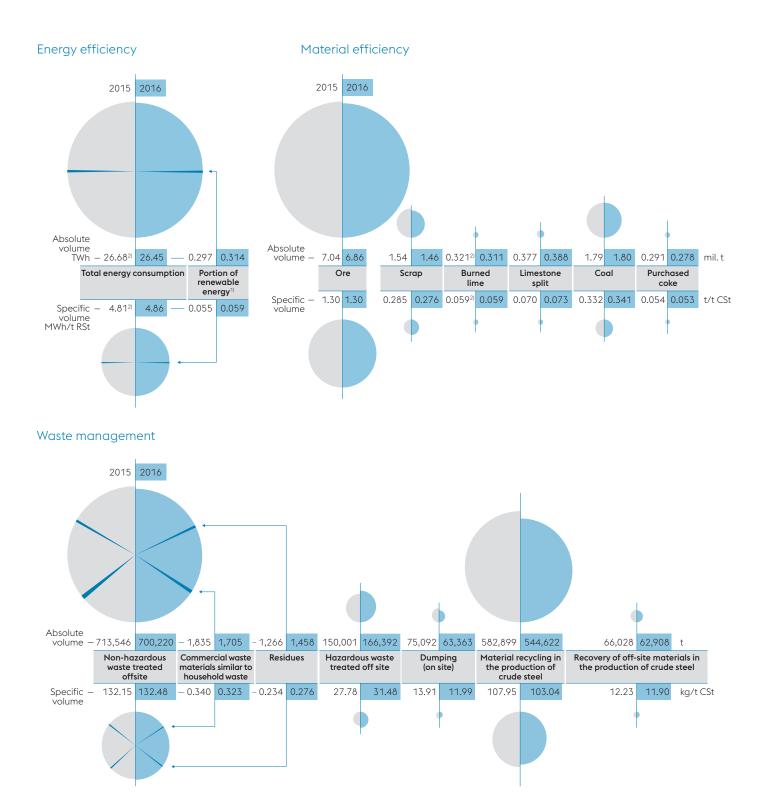
2017/18 ENVIRONMENTAL PROGRAM – NEW MEASURES

Company	Target	Measure	Figure	Deadlines	Status
voestalpine Stahl GmbH	Optimized dust detection strategy and dust separation in the burdening system of blast furnace A	Installation of a new exhaust and filter system	Reduction of roughly 3 tons/year of diffuse dust emissions	31 Dec. 2018	
voestalpine Stahl GmbH	Improved monitoring of dust separation by joining dedusting lines in the LD3 steelmaking plant	Integration of two smaller dedust- ing systems in the continuously monitored secondary dedusting system 2.2	Expansion of the continuous dust emission monitoring system	31 Mar. 2018	
voestalpine Stahl GmbH	Reduction of cooling water	Exchange of three water-cooled steel rolls in hot-dip galvaniz- ing line No.1 to non-cooled, full-ceramic rolls, thus eliminating energy loss to the cooling water	Cooling water reduced by roughly 150,000 cubic meters per year (roughly 4% of the annual discharge volume in hot-dip galvanizing line No.1	31 Jan. 2019	
voestalpine Stahl GmbH	Reduction of vapor pressure in RH1 and RH2	Implementation of ball valves and implementation of special control valves Higher level of safety	Reduction of steam consumption by approx. 11,000 tons/year	31 Mar. 2018	
Steyrling location	Increased efficiency in resource utilization through reduction of dead rock	Procurement of a mobile screen- ing unit and post-treatment of dead rock	Reduction of dead rock by roughly 4,500 tons/year through reuse of sifted-out limestone in production operations	31 Mar. 2019	
voestalpine Grobblech GmbH	Energy savings in heat-treating furnace (D20)	Optimization and cleaning of regenerator, optimization of offgas stack valve regulation and lambda optimization of all burners, revamp of burner control system	Reduced energy consumption by roughly 10% (MWh/t)	31 Aug. 2017	New
voestalpine Giesserei Linz GmbH	Minimized dumping of fireclay scrap	External recycling for the man- ufacture of refractory spraying mixture	External recycling of roughly 15 tons/year of fireclay scrap	31 Dec. 2017	measure
voestalpine Giesserei Linz GmbH	Minimized dumping of sand residues	Evaluation of external recycling of sand residues in collaboration with several customers	External recycling of roughly 400-500 tons/year of sand residues	31 Dec. 2018	
voestalpine Camtec GmbH	Reduction of chemical consumption	Conversion of the marking system from etching to laser film	Chemical consump- tion reduced by 90% using the new marking method	31 Mar. 2018	
voestalpine Steel & Service Center GmbH	Reduction of work-based travel between the Industriezeile location and the steelworks	Reorganization of production system operator teams in the in- terest of reduced travel between the two locations	Savings of roughly 10,000 km per year and thus approxi- mately 750 liters of diesel fuel	30 June 2017	
voestalpine Standortservice GmbH	Optimization of railway lighting systems	Track filed lighting systems up- graded to LED technology (new installation in railway systems in the area of the scrap yard and cold-rolling mill	Reduced electrical consumption in a portion of track field lighting by roughly 25%	31 Mar. 2018	
Logistik Service GmbH	Savings of diesel fuel in road- based vehicles required in production operations	Implementation of two new slag transporters	Savings of approx. 36,000 liters of diesel per year	31 Jan. 2018	
voestalpine Automotive Components Linz GmbH	Reduced water consumption in punching line No. 1	Conversion of main hydraulic unit from water to air cooling	Reduction from roughly 800 to 0 cubic meters of water per month (annual savings of 9,600 cubic meters)	1 May 2017	

PRODUCTION AND ENERGY FIGURES

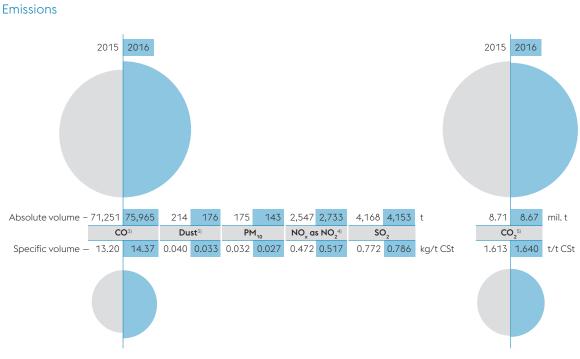
Linz location

Unit	2015 CY	2016 CY
in million tons	5.40	5.29
Unit	2015 CY	2016 CY
	1.1	1.1
	1.0	1.0
in million tons	2.2	2.3
In million tons	0.2	0.2
	0.7	0.7
	1.2	1.3
	8,906	7,444
t	117,890	129,496
	1,808,480	1,751,415
Unit	2015 CY	2016 CY
TWh	3.0	2.8
in million tons	0.023	0.000
TWh	0.40	0.55
	Unit in million tons t Unit TWh in million tons	in million tons 5.40 Unit 2015 CY Image: Constraint of the second sec

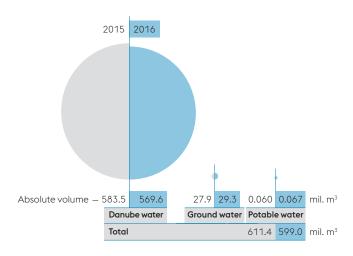

Steyrling location

Products	Unit	2015 CY	2016 CY
Burned lime (BL)		0.381	0.373
Crude lime	in million to po	1.168	1.161
Armor stones	in million tons	0.006	0.007
Limestone split (non-burned)		0.508	0.515
Energy	Unit	2015 CY	2016 CY
Natural gas		370	362
Electric power	GWh	17	16

¹⁾ Used as reducing agent in blast furnace


CORE INDICATORS

Linz location



¹⁾ Increased proportion of renewable energies with respect to electricity labeling from purchased third-party electricity. This reflects the following for the 2016 calendar year: water power (40.72 %), solid biomass (3.67 %), liquid biomass (0.01 %), biogas (1.03 %), wind energy (8.26 %), photovoltaic power (1.5 %), waste containing a high percentage of biogenic materials (1.45 %), landfill gas (0.02 %), sewage gas (0.01 %) and geothermal energy (< 0.01 %).</p>
²⁾ Values updated

The core indicators refer to total annual crude steel production. In the 2016 calendar year, the value was 5.29 million tons. In 2015 it was 5.40 million tons.

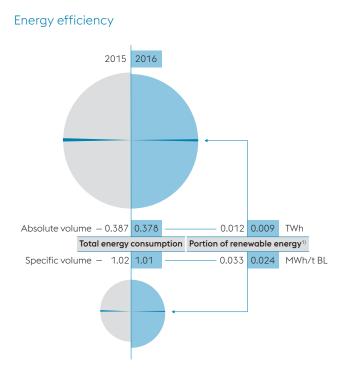
Water systems

Biological diversity ⁶⁾

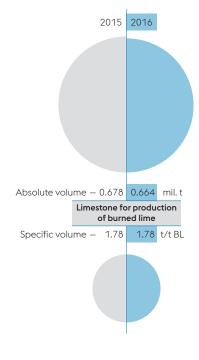
Total site surface area: 5,040,019 m²

Other greenhouse gases such as methane and fluorochlorohydrocarbons (FCHC) are emitted in only small amounts (roughly 75 tons of methane and 72 kg of FCHC).

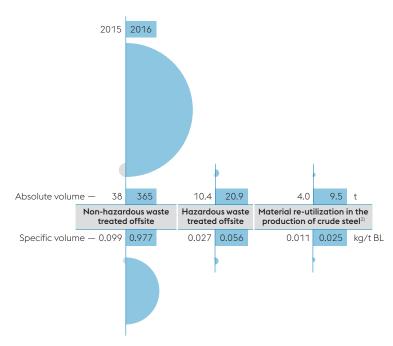
³⁾ From various reliable technical sources


⁴⁾ Process-related measure of variation

⁵⁾ From Emission Certificate Act (ECA) monitoring


⁶⁾ The core biological diversity indicator refers to the surface of the works premises at the Steyrling location as registered in the land registry in December 2015.

CORE INDICATORS


Steyrling location

Material efficiency

Waste management

¹⁾ Increased proportion of renewable energies with respect to electricity labeling from purchased third-party electricity. This reflects the following for the 2016 calendar year: water power (40.72 %), solid biomass (3.67 %), liquid biomass (0.01 %), biogas (1.03 %), wind energy (8.26 %), photovoltaic power (1.5 %), waste containing a high percentage of biogenic materials (1.45 %), landfill gas (0.02 %), sewage gas (0.01 %) and geothermal energy (< 0.01 %). ²⁾ Materials recycling at the Linz site The core indicators refer to total annual burned lime production. In the 2016 calendar year, the value was 0.381 million tons. In 2015 it was 0.373 million tons.

Biological diversity ⁵⁾

Total site surface area: 1,503,837 m^{2}

³⁾ Emissions from lime furnaces

⁴⁾ From Emission Certificate Act (ECA) monitoring

⁵) The core biological diversity indicator refers to the surface of the works premises at the Steyrling location as registered in the land registry in December 2015.

ENVIRONMENTAL HIGHLIGHTS

1986

Clean air

Implementing state-of-the-art technologies takes a high priority at the Linz location in order to avoid or reduce emissions.

More than 70% of the emissions are continuously measured and are transmitted online to the local environmental authorities. The remaining emissions are assessed in compliance with official requirements in prescribed intervals.

The emissions from lime extraction at the Steyrling location during the 2016 reporting year were minimal as compared to the previous year. Activities involving particularly large amounts of dust, such as blasting, take weather conditions into account.

Specific air emissions

Continual further development of production processes and the implementation of numerous air-pollution-control measures have led to a significant reduction in emissions.

Emissions reduction at the Linz location

per ton of crude steel since the mid 1980s

Specific volume of SO_2 per year in kg/t CSt

Specific volume of NO_X as NO_2 per year in kg/t CSt

1.56

Specific dust volume per year in kg/t CSt

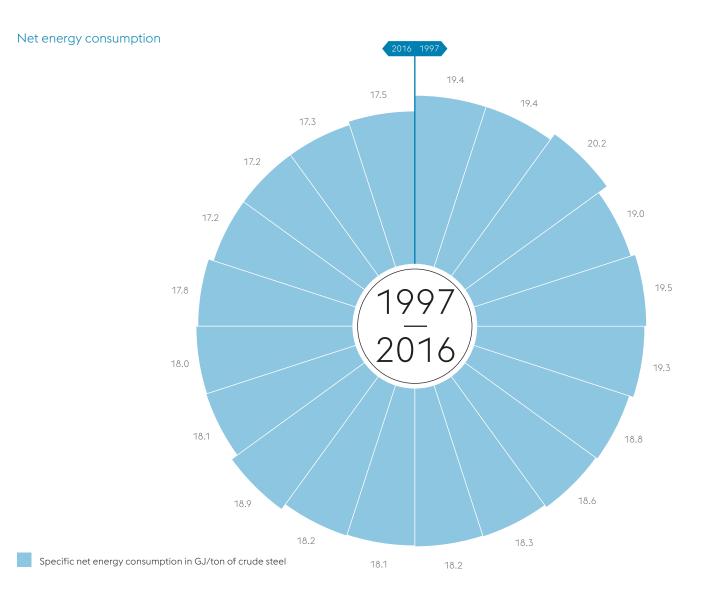
Plant	Half-hour-average value (mg/m _n ³)	Measured annual a	verage value (mg/m, ³)
	Limit value	2015 CY	2016 CY
Block 06	100	75	84
Block 03	100	66	59
Block 04	100	46	42
Block 05	100	60	56
Block 07	100	40	46
Gas and steam turbine		25	24
Central blower station 2, boiler 1	100	6	6
Central blower station 2, boiler 2	100	14	5
Pusher-type furnace 06	430	170	273 ¹⁾
Pusher-type furnace 07	430	190	197
Walking-beam furnace 1	2)	116	105
Sinter belt 5	150 3)	96	89
Hot-dip galvanizing line III	250	129	134
Hot-dip galvanizing line IV	250	113	108
Hot-dip galvanizing line V	250	77	106
Pusher-type furnace 1	500	346	339
Pusher-type furnace 2	2)	188	177
	Block 06 Block 03 Block 03 Block 04 Block 05 Block 07 Gas and steam turbine Central blower station 2, boiler 1 Central blower station 2, boiler 2 Pusher-type furnace 06 Pusher-type furnace 07 Walking-beam furnace 1 Sinter belt 5 Hot-dip galvanizing line III Hot-dip galvanizing line IV Hot-dip galvanizing line V Pusher-type furnace 1	Block 06100Block 03100Block 04100Block 05100Block 05100Block 07100Gas and steam turbine33Central blower station 2, boiler 1100Central blower station 2, boiler 2100Pusher-type furnace 06430Pusher-type furnace 07430Walking-beam furnace 121Sinter belt 5150 ³³ Hot-dip galvanizing line III250Hot-dip galvanizing line IV250Pusher-type furnace 1500	Limit value 2015 CY Block 06 100 75 Block 03 100 66 Block 04 100 46 Block 05 100 60 Block 07 100 40 Gas and steam turbine 33 25 Central blower station 2, boiler 1 100 6 Central blower station 2, boiler 2 100 14 Pusher-type furnace 06 430 170 Walking-beam furnace 07 430 190 Walking-beam furnace 1 21 116 Sinter belt 5 150 ³ 96 Hot-dip galvanizing line III 250 129 Hot-dip galvanizing line IV 250 77 Pusher-type furnace 1 500 346

SO ₂	Plant	Half-hour-average value (mg/m, ³)	Measured annual a	verage value (mg/m, ³)
-		Limit value	2015 CY	2016 CY
Power station	Block 06	200	83	88
	Block 03	200	113	97
	Block 04	200	125	102
	Block 05	200	115	88
	Block 07	200	118	100
	Gas and steam turbine	67	35	30
Blast furnace	Casting bay dedusting (BF A)	350	119	108
LD steelmaking plant	Secondary dedusting 1	101.5 4)	26	28
Hot-rolling mill	Pusher-type furnace 06	200	52	112 ¹⁾
	Pusher-type furnace 07	200	56	49
Coking plant	Sulfuric acid and gas cleaning system	1000 5)	380	371
Sintering plant	Sinter belt 5	350	298	298
Heavy plates	Pusher-type furnace 1	200	115	104

All emission sources are continuously monitored. The data are referenced each individual calendar year. ¹⁾ Pusher-type furnace No. 6 was converted in 2016 to coke-oven-gas operation, resulting in higher SO₂ and NO_x concentrations. ²⁾ The limit value is defined in the course of the acceptance test. ³⁾ Sinter belt No. 5: additional limitation of daily mean values for NO_x of 100 mg/Nm³. ⁴⁾ SO₂ limit values in kg/h. ⁵⁾ There is also a fraction limit value of 150 kg SO₂/day under normal operating conditions.

CO	Plant	Half-hour-average value (mg/m,³)	Measured annual average	ge value (mg/m _n ³)
		Limit value	2015 CY	2016 CY
Power station	Block 03	100	0.5	1.7
	Block 04	80	0.8	2.1
	Block 05	80	0.7	2.3
	Block 07	80	0.6	0.4
	Gas and steam turbine	33	1.0	1.4
Blast furnace	Central blower station 2, boiler 1	80	0.2	0.1
	Central blower station 2, boiler 2	80	0.1	3.0
Coil coating line	Strip coating line 1	100	2.7	3.9
	Coil Coating Line 2	100	7.8	7.4
T () (
Total C	Plant	Half-hour-average value (mg/m, ³)	Measured annual average	
		Limit value	2015 CY	2016 CY
Coil coating line	Strip coating line 1		2.7	2.5
	Coil Coating Line 2		4.4	4.9
ЦС		Half-hour-average value (mg/m, ³)	Manus dan sur al manual	
H ₂ S		Limit value	Measured annual average 2015 CY	2016 CY
Coking plant			2015 CT	2018 CT
HF	Plant	Half-hour-average value (mg/m_n^3)	Measured annual average	ge value (mg/m _n ³)
		Limit value	2015 CY	2016 CY
Sintering plant	Sinter belt 5	3	0.8	
				1.1
На	Plant	$\frac{1}{1}$	Measured annual average	
Hg	Plant	Half-hour-average value (mg/m,³)	Measured annual averag	ge value (mg/m"³)
Hg Sintering plant	Plant Sinter belt 5	Half-hour-average value (mg/m,³) Limit value 0.05	Measured annual average 2015 CY 0.043	
-	Sinter belt 5	Limit value 0.05	2015 CY	ge value (mg/m"³) 2016 CY
	Sinter belt 5	Limit value	2015 CY	ge value (mg/m,³) 2016 CY 0.040
Sintering plant	Sinter belt 5	Limit value 0.05	2015 CY 0.043	ge value (mg/m,³) 2016 CY 0.040
Sintering plant	Sinter belt 5	Limit value 0.05 Half-hour-average value (mg/m, ³)	2015 CY 0.043 Measured annual average	ge value (mg/m,³) 2016 CY 0.040 ge value (mg/m,³)
Sintering plant Dust	Sinter belt 5	Limit value 0.05 Half-hour-average value (mg/m, ³) Limit value	2015 CY 0.043 Measured annual average 2015 CY	ge value (mg/m,³) 2016 CY 0.040 ge value (mg/m,³) 2016 CY
Sintering plant Dust	Sinter belt 5 Plant Casting bay dedusting (BF A)	Limit value 0.05 Half-hour-average value (mg/m, ³) Limit value 20	2015 CY 0.043 Measured annual averag 2015 CY 6.9	ge value (mg/m, ³) 2016 CY 0.040 ge value (mg/m, ³) 2016 CY 4.6
Sintering plant Dust Blast furnace	Sinter belt 5 Plant Casting bay dedusting (BF A) Casting bay dedusting system (BF 5 and 6)	Limit value 0.05 Half-hour-average value (mg/m, ³) Limit value 20 10	2015 CY 0.043 Measured annual average 2015 CY 6.9 1.2	ge value (mg/m,³) 2016 CY 0.040 ge value (mg/m,³) 2016 CY 4.6 1.8
Sintering plant Dust Blast furnace	Sinter belt 5 Plant Casting bay dedusting (BFA) Casting bay dedusting system (BF 5 and 6) Sinter belt 5	Limit value 0.05 Half-hour-average value (mg/m, ³) Limit value 20 10 10 10	2015 CY 0.043 Measured annual average 2015 CY 6.9 1.2 1.6	ge value (mg/m,³) 2016 CY 0.040 ge value (mg/m,³) 2016 CY 4.6 1.8 1.6
Sintering plant Dust Blast furnace	Sinter belt 5 Plant Casting bay dedusting (BF A) Casting bay dedusting system (BF 5 and 6) Sinter belt 5 Sinter plant dedusting	Limit value 0.05 Half-hour-average value (mg/m, ³) Limit value 20 10 10 24	2015 CY 0.043 Measured annual average 2015 CY 6.9 1.2 1.6 1.6 12.5	ge value (mg/m, ³) 2016 CY 0.040 ge value (mg/m, ³) 2016 CY 4.6 1.8 1.6 5.4 ²)
Sintering plant Dust Blast furnace Sintering plant	Sinter belt 5 Plant Casting bay dedusting (BF A) Casting bay dedusting system (BF 5 and 6) Sinter belt 5 Sinter plant dedusting Sinter crusher and screening unit	Limit value 0.05 Half-hour-average value (mg/m, ³) Limit value 20 10 10 24 10	2015 CY 0.043 Measured annual average 2015 CY 6.9 1.2 1.6 1.6 12.5 1.0	ge value (mg/m, ³) 2016 CY 0.040 ge value (mg/m, ³) 2016 CY 4.6 1.8 1.6 5.4 ²¹ 1.1

The emission concentrations listed in this table refer to the legally prescribed oxygen content, e.g. emission protection law on boiler plant systems, directive on iron and steel.


All emission sources are continuously monitored. The data are referenced each individual calendar year. 11 H₂S is contained in the coke gas that is energetically utilized in other process steps. Emissions only occur in the form of SO₂.

²⁾ Dedusting of sintering plant: Electric filter replaced by fabric filter in spring of 2016.

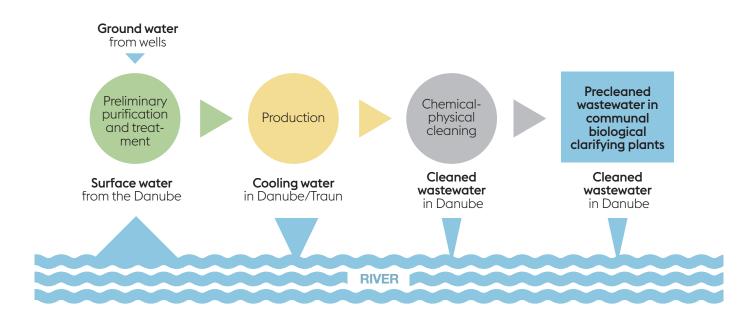
Energy

In our efficient use of energy, we focus on optimization of process gas utilization and energy recovery. Consistent energy monitoring and continuous plant system optimization for increased overall energy efficiency

The specific energy consumption was substantially reduced over the past twenty years. The Linz site is nearly energy-independent (with respect to electricity).

The energy required in steelmaking is derived primarily from coal, coke, natural gas and electricity.

Process gases (coke-oven gas, blast-furnace gas and converter gas) generated in the making of steel are used as energy-transfer media either directly or by efficiently converting the gases into heat or electrical energy in individual process steps. The active contributions of each employee to environmental protection and energy savings are of great value. Many projects, large and small, are continually being planned and implemented.

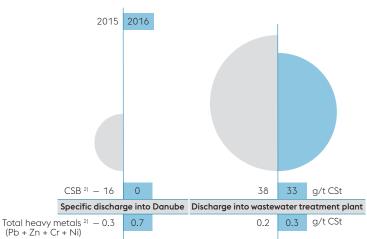

The spectrum ranges from small projects to large, industrial-scale programs such as the optimization of steam generation, reduced loss of compressed air and the optimization of thermal processes. These and many other measures saved more than 50,000 MWh during the 2016 calendar year.

Water management

Water is one of the most important operating supplies. It is needed to cool plant systems and to create steam in iron and steel production.

A total of 570 million m³ of water were pumped from the Danube in the 2016 calendar year. This cooling water is channeled back into the Danube in compliance with the defined temperature limit values. Depending on the wastewater constituents, was either cleaned before returning it to the Danube or was piped to the communal clarifying plant in Asten for biological treatment.

The sustainable management of water resources, particularly in compliance with local conditions, is an essential priority of voestalpine. CAREFUL TREATMENT OF WATER AS A NATURAL RESOURCE IS REGARDED AS A FUNDAMENTAL PRIORITY AT voestalpine.


Net blue water consumption

A holistic method (ISO 14046) that goes beyond the mere monitoring of specific water consumption $[m^3/t]$ is being implemented beginning in this calendar year to monitor and calculate net blue water consumption. Blue water consumption (direct) at the Linz location of voestalpine Stahl GmbH amounts to approximately 1.69 m³/ton, whereas blue water consumption (total, including upstream) amounts to roughly 4.03 m³/ton.¹⁾

Trends in discharged waste water volumes

In the 2016 calendar year, the amount of utilized water amounted to 599 million cubic meters.

Wastewater load

¹⁾ Based on data from 2013 ²⁾ Minus initial load from Danube

Waste management

Numerous waste and circulating materials are incurred during steelmaking and are returned to the production processes. This conserves natural raw materials. Waste and secondary raw materials are utilized in both in-house and external production process. Examples of this are scrap, end-of-life oils and waste greases. The following graphic provides an overview of utilized resources in the form of waste and recycled materials at the Linz site (not including scrap).

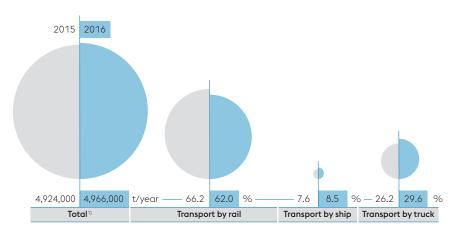
713,546 t

175,393 t

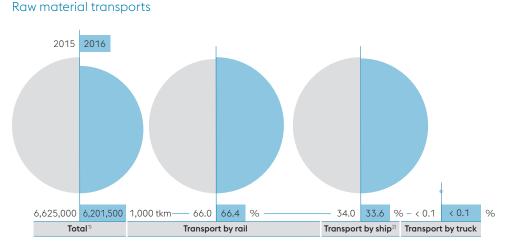
159,961 t

125,645 t

532,813 t


150,001 t

Transport


Material supply and product delivery are by railway, waterway or truck. It is important to us that our transports are as ecological as possible. Logistik Service GmbH and Cargo Service GmbH combine their transport possibilities, e.g. mobile systems, in order to avoid empty hauls and rely heavily on continual improvements in logistics systems, in technologies, implementation, methods, environmentally compatible driving techniques. Where possible, as many transports as possible are transferred from the roadway to the more environmentally compatible railway.

The figures for distribution of raw materials transported within Europe and distribution of product deliveries to the individual means of transport are as follows in the 2015 calendar year:

Product dispatch

¹⁾ Products delivered from the Linz site by Logistik Service GmbH and Cargo Service GmbH

¹¹ Raw material deliveries in ton kilometers of ore, coal, scrap, lime, coke and coke breeze ²¹ Raw material transport by inland waterway

The definition of emissions is difficult to impossible because of the large number of transport routes in use by the various means of transport (railway, ship, truck) with a wide variety of engine and vehicle technologies.

For this reason, no direct emission assessment is made for the transport of raw materials and for the delivery of products to voestalpine at the Linz location. Only the modal split is used as evaluation criteria for the assessment according to the respective transport routes.

SAFETY TAKES HIGHEST PRIORITY SEVESO PRODUCTION SYSTEMS

External emergency plan

Detailed information on the alarms and measures outside the works premises can be found in the external emergency plan issued by the fire department of the city of Linz. Required measures in the event of Danger Level III are contained in the internal emergency plan. The safety report complies with Section 84f of the Trade and Industrial Code dated 1994 and is available for review in the Environment Department of voestalpine Stahl GmbH.

Information to the public on safety measures and correct behavior in the event of industrial accidents pursuant to Section 14 of the Industrial Accident Act.

At the Linz production site, voestalpine Stahl GmbH operates plant systems that are subject to Section 8a of the Trade and Industrial Code of 1994 and the Industrial Accident Act and provides the following information on safety measures and proper behavior in the event of industrial accidents. Not every plant system failure is an industrial accident, which is defined as an event in which certain hazardous substances are released that pose a danger to humans or to the environment.

The precautions to be taken to prevent and limit industrial accidents are set forth in the Industrial Accident Act. Because of the comprehensive safety measures that have been taken for many years in production, the probability of you as a neighbor being affected by an industrial accident is very low. An industrial accident can only occur in the event that all the precautionary technical and organizational measures simultaneously fail. In the unlikely event that an industrial accident occurs in spite of all the safety measures that have been implemented, the following information advises you of steps to take.

There are six relevant plant areas in the integrated metallurgical facility that could have an effect beyond the works premises in the unlikely event of an industrial accident:

- » Coke oven batteries, including coking gas recovery, conveyor system and gasometer
- » Tar extraction and crude benzene plant, including storage tank
- » Blast furnaces, including gas cleaning, conveyor system and gasometer
- » Converter operations, including converter gas cleaning, conveyor system and gasometer
- » Unloading of fuel oil and distribution into piping and storage tanks
- » Storage and distribution lines for calcium carbide in the steelmaking plant

Steam reformers A and B and air separation units 8 through 10 are operated by Linde Gas GmbH according to the Linde low-pressure technology and are safety-relevant systems installed on the works premises in Linz.

The substances contained in the systems of voestalpine Stahl GmbH and Linde Gas GmbH are subject to the provisions set forth in Section 8a of the Trade and Industrial Code dated 1994. COMPREHENSIVE SAFETY MEASURES ARE IN PLACE ENSURE THAT THE RISK OF AN INDUSTRIAL ACCIDENT IS EXTREMELY LOW.

The authorities have been notified pursuant to Section 84d, of the Trade and Industrial Code. The corresponding safety reports have been submitted to the authorities (Municipal Offices of the Provincial Capital City of Linz, Office of the Upper Austrian Provincial Government). These reports are regularly updated and are available for review.

The following safety aspects are taken into account in the safety report submitted:

- » Processes and reactions occur in closed systems.
- » Hazardous substances are replaced where possible and remaining amounts are reduced to the specifically required volumes.
- » The avoidance of waste takes a high priority in the planning and operation of plants.
- » Safety systems generally consist of multiple stages.
- » The plants are operated, maintained and tested by qualified and regularly re-trained personnel.

The plants are regularly tested in accordance with legal regulations by in-house and external experts, e.g. TÜV. Stringent safety regulations are assessed by the authorities for all designated plant systems. As a result of these regulations and precautions taken by the operators, there has never been an accident at the works since it has existed that would have posed any hazard to the population. In spite of the high safety standards, then risk of accidents can never be completely eliminated. Even though the probability of an accident with effects beyond the works premises is very low, voestalpine Stahl GmbH nevertheless takes this opportunity to inform the public in a precautionary manner of possible effects and measures to take in the event of an accident.

COKE OVEN BATTERIES, INCLUDING COKING GAS RECOVERY, CONVEYOR SYSTEM AND GASOMETER

TAR EXTRACTION AND CRUDE BENZENE PLANT, INCLUDING STORAGE TANK

BLAST FURNACES, INCLUDING GAS CLEANING, CONVEYOR SYSTEM AND GASOMETER

CONVERTER OPERA-TIONS, INCLUDING CON-VERTER GAS CLEANING, CONVEYOR SYSTEM AND GASOMETER

Information on possibly hazardous plant systems and production activities

The coke required in the blast furnace is produced in the coking plant. For this purpose, finely ground coal is heated in coking ovens that are arranged in batteries each containing a total of 40 ovens. The coal is heated for approximately 18 hours to a temperature of roughly 1260°C. The coal is converted into coke, which means that it is baked until it has released all its gaseous constituents. These gaseous constituents make up the coke gas that is cleaned to a high degree in the coking plant and is then used as a fuel gas in the power plant and other furnace systems throughout the steel works. A gasometer and a network of gas lines store the gas until it is used. The system of course is closed. Coke gas contains approximately 7% carbon monoxide and is, as are all flammable gases, combustible with certain amounts of air.

Crude tar and crude benzene occur as co-products during the high-grade cleaning of the coke gas. Crude benzene is cleaned out of the coke gas by means of wash oil in two scrubbers. It is then removed by means of distillation from the circulating wash oil and stored intermediately in a 2000 m3 tank before it is delivered to purchasers. The crude benzene storage tank is suctioned out. The filling process is by means of a gas displacement device to ensure that no emissions can be released. Crude benzene contains up to 85% benzene. The fumes are, as with all other flammable liquids, combustible when mixed with certain amount of air. The crude tar condenses with condensation from the crude coke gas and is separated in tar separators from the crude tar tanks. The individual parts of the tar separator units are equipped with a liquid-tight bucket system to prevent any emission to the environment. The crude tar and crude benzene are contained in tank railcars until they are used in the closed systems of production lines.

Blast furnace gas is a by-product and co-product that occurs during the production of hot metal in the blast furnace. This blast furnace gas is cleaned to a high degree, removing all the dusts, and is used as a fuel gas in the blast furnace itself, the power plant, in the coking plant and other furnace systems throughout the steel works. A gasometer and a network of gas lines store the gas until it is used. The entire network is a closed system. Blast furnace gas contains approximately 25% carbon monoxide and is, as are all flammable gases, combustible with certain amounts of air.

Steel chemically differs from iron primarily in its lower carbon content. The carbon contained in the crude iron produced in the blast furnace is removed from the steel melt by means of the oxygen top-blowing process during steelmaking in the LD steel plant. This process yields the so-called converter gas that is subjected to a high-grade cleaning process in electric filters and then added in a controlled manner to the top gas in order to increase its calorific value. A gasometer and a network of gas lines store the gas until it is used. The system of course is closed. Converter gas contains approximately 60% carbon monoxide and is, as are all flammable gases, combustible with certain amounts of air.

AIR SEPARATION UNIT

Air is divided in air separation units (8 through 10) belonging to Linde Gas GmbH by means of rectification into nitrogen, oxygen and argon constituents. The generated gases are either piped in gaseous form to consumers in the works of voestalpine Stahl GmbH or to the Chemiepark or they are liquefied, stored at super-cooled temperatures and filled into tank cars. In addition to the air as a raw material and different energies, hydrogen is also required in argon fine cleaning system (8) of the air separation unit. This hydrogen is supplied by the hydrogen production facility at voestalpine.

Natural gas is converted through chemical reactions into hydrogen in the steam

reformers (STR A and B) of Linde Gas GmbH. The gaseous hydrogen is used in-

house and is supplied to voestalpine Stahl GmbH and Chemiepark in Linz. Ex-

ternal customer supply is provided on trailer units.

HYDROGEN PRODUCTION FACILITY

UNLOADING OF FUEL OIL AND DISTRIBUTION INTO PIPING AND STORAGE TANKS

Heavy fuel oil is delivered in tankers via the river port to voestalpine Stahl GmbH and is there pumped directly through a closed-pipe system into the storage tanks. From the storage tanks, the heavy oil is pumped as it is required through piping to the blast furnaces, where it is utilized as an ore reduction agent in minimizing required volumes of coke. Light fuel oil is delivered in tank trucks and pumped into the storage tanks at the power station of voestalpine Stahl GmbH. The light fuel oil is pumped through piping from the storage tank to block 7 of the power plant of voestalpine Stahl GmbH. The light fuels, such as the usually used metallurgical gases and natural gas, are temporarily not available. In order to ensure that the light fuel oil is ready for use, it is continuously circulated in piping between the storage tank and the power station in order to maintain the required temperature and pressure.

STORAGE AND DISTRIBUTION LINES FOR CALCIUM CARBIDE IN THE STEELMAKING PLANT

The hot metal is combined with scrap and additives in three converters in the LD steelmaking plant. The mixture is converted in an oxygen blowing process at approximately 1650 °C to crude steel. Further treatment takes place in the ladle furnace and in the vacuum degassing unit. The molten steel is cast in the continuous caster into slabs.

Calcium carbide is used in the steelmaking plant to remove sulfur (desulfurization) and oxygen (deoxidation) from the hot metal.

A high standard of safety is guaranteed by continuous monitoring by plant personnel, regular tests and the safety precautions described above. Should an industrial accident occur, however, in spite of all the technical and organizational preparation made to prevent such an incident, the emission of poisonous substances still poses a possible danger in addition to explosion and fire. In such an instance, affects to human health and the natural environment outside the works premises, especially caused by gas or fumes that may be carried over distances, cannot be excluded.

Information on the types of dangers and their possible consequences

The following substances when emitted into the atmosphere pose a potential danger beyond the premises of the steel works.

Carbon monoxide is contained in

- » Coking plant gas (approx. 7 volume percent CO)
- » Blast furnace gas (approx. 25 volume percent CO)
- » Converter gas (approx. 60 volume percent CO)

The listed process gases are easily combustible and are poisonous because of their CO content. When emitted to the atmosphere, these gases are diluted with atmospheric air to differing degrees that lead to various symptoms depending on the respective concentrations. These symptoms may include headache, dizziness, sickness, sleepiness, asphyxiation, unconsciousness and respiratory paralysis. Patients must be exposed to fresh air, must rest comfortably and tight clothing must be loosened. In the event of apnea, resuscitation is required to introduce oxygen to the brain. Call a doctor. Keep patients warm. In the event of threatening unconsciousness, place the patient on his or her side and transport in stable position.

BENZENE Patients must be exposed to fresh air, must rest comfortably and tight clothing must be loosened. Resuscitate immediately in the event of apnea. Remove contaminated clothing immediately. Rinse contaminated skin sufficiently with water. Rinse contaminated eyes adequately with water for ten to fifteen minutes. Call a doctor. Keep patients warm. In the event of threatening unconsciousness, place the patient on his or her side and transport in stable position.

ATMOSPHERIC GASES AND HYDROGEN Because of their volumes and properties (both not poisonous) and distances to other substances, the hazardous substances (oxygen, nitrogen, argon and hydrogen) contained in the air separation and hydrogen production units are not potentially hazardous outside the premises of voestalpine Stahl GmbH.

CALCIUM
CARBIDEThe carbide mixture in the hopper contains essential constituents as follows:
Calcium carbide (CaC2):
Coal, including volatile constituents:63.1%-72.3%
5.5%
Content:
32.59%-19.14%
3.0%

Calcium carbide is not a flammable substance. Ethyne develops in the presence of moisture and mixes with air to form an explosive gas atmosphere and calcium hydroxide. The humidity from the air is enough to begin the reaction. Under atmospheric conditions, one ton of calcium carbide of technical quality (approx. 68% CaC2) in reaction with water yields roughly 258 Nm³ ethyne (= acetylene gas).

MEASURES

The measures taken to eliminate accidents and limit the consequences of an accident are regulated in the emergency plan of voestalpine Stahl GmbH. This plan is regularly updated in collaboration with the Municipal Offices of the Provincial Capital City of Linz and the fire department of Linz pursuant to the pertinent official regulations of the provincial capital of Linz.

The measures to be taken in the event of an incident are obligatory. The safety report of voestalpine Stahl GmbH is submitted on a regular basis to the authorities. The report is an integral part of the tests carried out by the responsible authorities that also serve to meet requirements and adaptations pursuant to Section 8a of the Trade and Industrial Code dated 1994.

With respect to the air separation unit, a safety report has also be submitted by Linde Gas GmbH.

EXTERNAL EMERGENCY PLAN

Detailed information on the alarms and measures outside the works premises can be found in the external emergency plan issued by the fire department of the city of Linz. Required measures in the event of Danger Level III are contained in the internal emergency plan. Notification procedures (excerpt from the emergency plan of voestalpine Stahl GmbH). The following measures have been determined in accordance with the emergency plan of voestalpine Stahl GmbH:

- » Works fire department responds to the scene with
- all fire trucks and breathing apparatus vehicle
- » Fire department of the City of Linz responds to the scene
- » Establishment of a command center on site managed by City of Linz fire department
- » Measurements taken to eliminate dangers such as cordoning off area by gas search troop, evacuation of the cordoned off area, radio announcements, etc.

Warning

The public is warned by means of sirens in the event of an extraordinary incident. Industrial accidents on the premises of are voestalpine Stahl GmbH and steps to take by the public are announced on public radio and television stations. This procedure and the type of reports required by the authorities are defined in the in-house emergency plan submitted to the authorities.

Attention

Please do not call emergency telephone numbers without any important reason. This will ensure that the lines remain open for actual emergencies.

Contact numbers for inquiries and further information

Works fire department: T. +43/50304/15-5077 Environmental Department: T. +43/50304/15-5783 Occupational Safety Department: T. +43/50304/15-6190 Linde Gas GmbH: T. +43/50/4273-1616

Link to Environmental Report on the internet

www.voestalpine.com/group/en/group/environment/environmental-statements.html

OVERVIEW OF POTENTIAL HAZARDS AND COMPREHENSIVE EMERGENCY PLANS FOR THE FACTORY PREMISES.

RADIATION, NOISE AND ODOR

PROTECTING OUR NEIGHBORS FROM NOISE AND OBNOXIOUS ODORS IS AN IMPORTANT PRIORITY FOR US.

- RADIATION
 All raw materials at the site are inspected thoroughly for radiation by highly sensitive devices before they delivered to production facilities. Radioactive tests are conducted on all heats of the intermediate hot-metal product to exclude any risk.
 NOISE
 The works premises has been divided into 16 contingency sections according to the environmental impact assessment (L6). Higher noise loads of individual surface areas can be balanced by surface areas that do not reach permissible noise levels. From the perspective of neighborhood protection, limitation of noise emissions is important with respect to on-site expansion. We have taken seriously the rare complaints that have come from neighbors and have taken measures accordingly.
 ODOR
- produced.

 VIBRATIONS

 Lime-containing rock at the Steyrling site is mined from the walls of an open pit

vorable level has now been achieved to the effect that no adverse odors are

by means of conventional blasting. This can cause ground vibration. Shooting and blasting activities are announced to neighboring parties ahead of time.

GLOSSAR

EMAS REGULATION	Regulation (EC) No 1221/2009 of the European Parliament and of the Council of 25 November 2009 establishing a program for the volunteer participation of organizations in a community system dedicated to environmental manage- ment and company environmental impact assessment: EMAS = Eco Manage- ment and Audit Scheme.
LD PROCESS	Linz-Donawitz process - Top-blowing of hot metal with technical-grade oxygen.
IMS POLICIES	Guidelines and overall objectives set forth by executive management for the areas of quality, safety and environmental issues at the production site.
ENVIRONMENTAL AUDIT	Systematic, documented, regular and objective evaluation of environmental performance.
ENVIRONMENTAL MANAGEMENT SYSTEM	Part of a company-wide management system that includes organizational structures, planning activities, responsibilities, methods, processes, procedures and resources for the development, implementation, fulfillment, evaluation and maintenance of environmental policies.
ENVIRONMENTAL PROGRAM	Description of the measures required to achieve environmental objectives and individual environmental goals or planned measures (responsibilities, means and deadlines).
SOIL VAPOR EXTRACTION (SVE)	Soil vapor extraction in the course of a coking plant remediation project in Linz.
BTEX	Abbreviation for benzene, toluene, ethyl-benzene and xylene-volatile aromatic compounds.
DENO _x	Offgas denitrification system for the prevention of nitrous oxides as offgas, such as in power plants.

INFORMATION, CONTACT AND ABOUT US

Environmental statement

The next consolidated Environmental Report will be submitted for review in October 2019 and published thereafter. In addition, an updated version is created, externally reviewed and published on an annual basis.

Certified environmental experts

Harald Ketzer Florian Mitterauer Lloyd's Register EMEA/Vienna branch Opernring 1/E/620, 1010 Vienna, Austria

Contact

Johann Prammer Head of Strategic Environmental Management of voestalpine AG and Steel Division Environment Department

voestalpine-Straße 3 4020 Linz, Austria T. +43/50304/15-77171

http://www.voestalpine.com/group/en/group/environment/

The Linz and Steyrling locations have established independent environmental management systems. The public is informed of the environmental measures taken at these locations in compliance with the community systems for environmental management and environmental impact assessment.

Registry number: AT-000216

About us

Owner, editor and media owner voestalpine Stahl GmbH, voestalpine-Straße 3, 4020 Linz, Austria

Responsible for content Johann Prammer

Design

WAK Werbeagentur GmbH, Linzer Straße 35 4614 Marchtrenk, Austria www.wak.at

voestalpine Grobblech GmbH

voestalpine-Straße 3 4020 Linz, Austria T. +43/50304/15-0 grobblech@voestalpine.com www.voestalpine.com/grobblech

voestalpine Giesserei Linz GmbH

voestalpine-Straße 3 4020 Linz, Austria T. +43/50304/15-0 giesserei@voestalpine.com www.voestalpine.com/giesserei_linz

voestalpine Steel & Service Center GmbH

voestalpine-Straße 3 4020 Linz, Austria T. +43/50304/15-0 ssc@voestalpine.com www.voestalpine.com/ssc

voestalpine

Standortservice GmbH voestalpine-Straße 3 4020 Linz, Austria T. +43/50304/15-0

Logistik Service GmbH

Lunzerstraße 41 4031 Linz, Austria T. +43/732/6598-0 office@logserv.at www.logserv.at

voestalpine Camtec GmbH

voestalpine-Straße 3 4020 Linz, Austria T. +43/50304/15-0 sales.camtec@voestalpine.com www.voestalpine.com/camtec

Cargo Service GmbH

Lunzerstraße 41 4031 Linz, Austria T. +43/732/6598-0 office@cargoserv.at www.cargoserv.at

voestalpine Automotive Components Linz GmbH

Stahlstraße 47 4020 Linz, Austria T. +43/50304/15-0 automotivecomponents.linz@voestalpine.com www.voestalpine.com/automotivecomponents

voestalpine Stahl GmbH voestalpine-Straße 3 4020 Linz, Austria T. +43/50304/15-0

stahl@voestalpine.com www.voestalpine.com/steel

